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We propose a version of the Bak-Sneppen model in which the extremal dynamics is relaxed onto a stochastic
dynamics, dependent on the fitnessf . This system self-organizes into a stationary state, characterized by the
absence of a sharp threshold in the fitness distribution and by nontrivial power law temporal correlations. The
properties of these correlations are studied and discussed in detail, and the behavior of the fitness distribution
is studied analytically.@S1063-651X~98!02009-1#
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Self-organized criticality~SOC! has been widely investi
gated during the past few years, as one of the promin
candidates to explain the spontaneous critical behavio
many natural phenomena@1,2#. Systems exhibiting SOC be
havior are characterized by the absence of any time or le
scale, resulting in apower lawdistribution of many relevan
quantities@3–6#. From the theoretical point of view, SOC
behavior emerges in many models withextremal dynamicsin
which the element that has extremal properties drives
evolution of the system@2#. Typical examples of such mod
els are invasion percolation for fluid displacement in poro
media@5#, and the Sneppen model for the dynamics of s
faces pinned by quenched disorder@4#. The Bak-Sneppen
~BS! model of biological evolution is the simplest extrem
model realizing SOC@3#.

In its original version, the BS model describes a on
dimensional ‘‘food chain’’ ofN sites~‘‘species’’! in which
the fitnessf of each species is described by a random nu
ber between 0 and 1. At every time step the site with
smallest fitness~in the following referred to as the activ
site! is found, and its fitness~as well as the fitnesses of it
two nearest neighbors! changed at random. The critical sta
is a stable attractor of the dynamics, and is characterize
a threshold in the population density, and by power law d
tributions of some characteristic quantities such as the a
lanche size distribution and the first- and all-return tim
distributions of the activity@3#.

A question that arises naturally is to what extent the
plication of extremal dynamics is justified in the biologic
context. Extremal dynamics emerges from the large sep
tion of time scales typical of evolution in fitness landscap
Species that are in a local minimum of the fitness landsc
evolve toward a nearby peak much faster than highly fit s
cies drift away from their privileged condition@7–9#. One
could, however, think of situations in which several spec
PRE 581063-651X/98/58~3!/3993~4!/$15.00
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are in local minima within the same ecological network. F
these species the separation of time scales can be relax
allow more than one species to mutate, i.e., every species
a chance to be the next one to evolve, but the least fit spe
is still the most likely to change at the next time step. In th
paper we relax the extremal dynamics of the BS model
cording to this principle. Every species is assigned a pr
ability p( f ) to be selected that depends on its fitness.
have chosen the class ofp( f ) spanned by a parametera
according to

pa~ f !5S (
i 51

N

f i
2aD 21

f 2a, ~1!

whereN is the number of sites~species! on the lattice. The
BS model corresponds to the limita→`.

A relaxation of the extremal rule has already been int
duced in the BS model in the way of a temperaturelike
rameter@10#. In that case, the probability of a site to b
chosen as active was given by a Boltzmann weight fac
pT( f );e2 f /T, that upon normalization gives

pT~ f !5S (
i 51

N

e2 f i /TD 21

e2 f /T. ~2!

On introducing probability~2!, one sees that the model
critical only in the limit T→0. Any value of temperature
T.0 leads to a different behavior@10#. Our scheme is more
in line with recent results in the context of polymers in
disordered environment, where choices such as Eq.~1! are
introduced in order to move from the weak disorder limit
the strong disorder case. In that context it is observed tha
strong disorder regime emerges only fora5`, a finite be-
ing always in the weak disorder universality class@12#. Our
results show a similar trend, but in addition some nontriv
3993 © 1998 The American Physical Society
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features appear. In particular, although the system is alw
noncritical for anya,`, some quantities exhibit a powe
law behavior at intermediate times fora.1. At variance
with the approach of Ref.@10#, defining the probabilities via
Eq. ~1! ensures that when the fitness of a site tends to z
the probability of choosing it approaches one~independent
of the lattice size!, that ispa( f→0)→1. In the case ofpT ,
on the other hand, the same limit yields a number that
proaches zero asN→`.

Let us now proceed to discuss the results obtained for
probability pa( f ) @for simplicity, we will refer to this as
p( f ) in the future#. The fitness probability distributionn( f )
at stationarity is plotted in Fig. 1, for different values ofa.
For largea the distribution goes to the BS step function wi
a threshold atf 5 f c'0.667. However, for any finitea there
remains a tail of nonzero occupation probability, even
small fitnesses. This is what we naively expect, since
fitness has a certain probability to survive.

The qualitative behavior ofn( f ) can be derived from a
mean field master equation~spatial correlations are ne
glected!

ṅ~ f ,t !5E
0

1

P~y→ f !n~y,t !dy12E
0

1

n~y,t !dy

2E
0

1

P~ f→y!n~ f ,t !dy22n~ f ,t !E
0

1

dy. ~3!

In this equation,P(a→b) represents the probability that th
fitnessa, of the chosen species, is changed tob. The two
terms not containingP(a→b) give the contribution of the
neighbors. In our model we haveP(y→ f )5M (a)y2a and
P( f→y)5M (a) f 2a, with M (a) given by the normaliza-
tion. From Eq.~1! we see that, in the limitN→`,

M ~a!5F E
0

1

n~ f ! f 2ad f G21

. ~4!

FIG. 1. Fitness distribution for different values ofa. The verti-
cal line represents the position of the threshold of the Bak-Snep
model. In the inset~where the units are the same as in the la
figure! we show a power law fit~dashed line! of the fitness prob-
ability distribution n( f ) for a52 ~solid line!. The fit yields an
exponenta851.85, that is indeed very close to the mean fie
predictiona852. The deviation from power law behavior for ver
small f in n( f ) is due to finite size effects.
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This relation implies that fora.1, n( f ); f a8 for f→0,
with a8>a21. By inserting these relations into Eq.~3!, we
obtain

ṅ~ f ,t !5M ~a!E
0

1

dy
n~y,t !

ya 122M ~a!E
0

1

dy
n~ f ,t !

f a

22n~ f ,t !

532M ~a!
n~ f ,t !

f a 22n~ f ,t !. ~5!

In the stationary state,n( f ,t) does not depend on time, an
therefore the solution of Eq.~5! reads

n~ f !5
3 f a

2 f a1M ~a!
. ~6!

Sincea85a, the normalization condition is fulfilled. Using
the normalization condition together with Eq.~6!, it is pos-
sible to show thatM (a);2332a for a→`. Substituting
this expression back into Eq.~6!, we recover, in the limita
→`, the mean field fitness distribution of the Bak-Snepp
model, namely,n( f )5 3

2 u( f 2 1
3 ). Turning our attention

once again to Fig. 1, in the inset one can see that, foa
52, the exponenta8 obtained numerically is very close t
the mean field prediction.

We now come to the investigation of correlations with
the asymptotic state. For this purpose we performed num
cal simulations for values ofa ranging from 0 to 50, and
lattice sizes up to 220 ~the limitations introduced by the nu
merical treatment precluded us from going beyonda550!.
In our simulations we collected statistics for avalanches
all- and first-return time distributions. The dynamics of o
model not being extremal, the causal connection inside
avalanche cannot be defined in terms of a critical thresh
f c for the fitness distribution~in fact, as Fig. 1 indicates, this
threshold does not exist!. One needs another definition o
causal connection inside an avalanche. The one we a
here has been tested in both extremal and nonextrema
namics with quenched disorder@11#.

The first return time distributionPf(t) is characterized by
two different power law regimes. For short times, a behav
resembling that of the original BS model appears (t f

5t f
(BS)). For longer times, the random choice of the acti

site over the lattice plays an important role in changing
value of the exponent to a newt f(a). The exponents corre
sponding to this second regime are shown in Fig. 2, wh
one can see thatt f(a)→12 as a increases. The all-return
time distribution exhibits the same kind of crossover: T
exponentsta(a) corresponding to the second regime a
also shown in Fig. 2. Our simulations indicate that the va
of t at which the crossover takes place increases asa in-
creases. This reflects the fact that the system behaves
and more like the BS model asa→`. We will come back to
this point in the case of the avalanches.

To understand better the behavior of the system aw
from the BS regime, we proceed to analyze in detail
first-return time distribution in the casea52. In this case,
the BS behavior is relegated to time scales comparable
the microscopic times and, therefore, of no relevance. Mo

en
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over, the fact that the exponent is less than one~see Fig. 2!,
implies the presence of a cutoff in the distribution whi
depends on the system sizeN. As we show below, the de
pendence of the cutoff onN can be used to understand th
underlying processes leading to a non-BS power law beh
ior.

In Fig. 3, the first-return distributionPf(t,N) is plotted
for a52 and different system sizesN5212, 214, and 216.
One can clearly see a power law behavior with an expon
t f(a52)50.50(1), followed by an exponential cutoff re
lated to the finite size of the system. In the inset in Fig. 3,
plot the collapse of the same data according to the law

Pf~ t,N!5t2t fN2z~12t f ! f S t

NzD . ~7!

The data for different systems sizes lay one on each o
with the choicest f(a52)50.50(1) andz51. The exponent
z51 is the same as for a completely random choice of
active site over the lattice~corresponding toa50!, where
the first-return probability can be exactly computed as

FIG. 2. First-return time exponent~circles! and all-return time
exponents~squares! vs a.

FIG. 3. First-return time probability distribution with an expo
nent a52 and different system sizesN5212, 214, and 216. The
dashed line is a power law with exponent 0.50. The collapse plo
the three distributions according to Eq.~7! is shown in the inset.
Both the main figure and the inset are plotted on a log10-log10 scale.
t is measured in time steps.
v-

nt

e

er

e

Pf~ t,N!5
1

N S 12
1

ND t21

;
1

N
e2t/N, N@1. ~8!

This shows that the cutoff in thePf(t,N) is not a finite size
effect but, rather, evidence of noncriticality. The presence
a damping factorN2z(12t f ) in Eq. ~7! is necessary for the
normalization of the first-return probability in the thermod
namic limit.

The fact that the system is not critical can be better
derstood by looking at the avalanche distributions. As can
seen in Fig. 4, a nonintegrable power law behavior is f
lowed by an exponential decay. The best fit for the avalan
distributions is provided by the function

P~ t,a,N!;t2te2l~a,N!t, ~9!

where l21(a,N) is the characteristic length scale for th
avalanches, andt50.60(2) for any value ofa. We also
computed the values ofl for different a’s and different val-
ues of N. The results are shown in Fig. 5, and lead tol

of

FIG. 4. This figure shows the unnormalized avalanche proba
ity distributions for different values ofa. The different lines repre-
sent the best fit given by Eq.~9!. The figure is plotted on a
log10-log10 scale, andt is measured in time steps.

FIG. 5. Scaling of the characteristic timel~a! vs a (15,a
,30) ~see text for details!.
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5A(N)a2d, where A(N5213)571(2), A(N5210)543(2)
andd52.2(2), andd independent ofN.

In this paper we have introduced a version of the B
Sneppen model in which a stochastic dynamics replaces
original extremal one. The present modification of the
model is noncritical, just as in previous attempts to re
extremal dynamics@10#. Nonetheless, at variance with Re
@10#, we have shown that it is possible to recover a BS-l
behavior for first- and all-return distributions~on small time
scales! for large values ofa. The long-time scales also ex
hibit nontrivial power law correlations, whose origin can
understood in terms of the random choice of the minim
due to early end of the avalanches.
-
he

x

e

Further insights can be obtained by studying the distri
tion of the avalanches. On the one hand, this allows us
compute the typical time lengthl21 introduced into the sys-
tem with the parametera. On the other hand, it leaves u
with the unsolved problem of understanding the indep
dence of the exponentt on a, evidence that contradicts th
naive expectation and the behavior of the other distributi
studied here. It is worth pointing out that an analogous int
mediate time behavior was recently observed in the integ
tion of population dynamics equations~such as Lotka-
Volterra equations! @13#. This work can be considered as a
attempt to build a bridge between extremal models~showing
SOC behavior! and continuous equations~e.g., Lotka-
Volterra equations!, the most frequently used paradigms
biological contexts.
-
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