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We propose a version of the Bak-Sneppen model in which the extremal dynamics is relaxed onto a stochastic
dynamics, dependent on the fitndssThis system self-organizes into a stationary state, characterized by the
absence of a sharp threshold in the fitness distribution and by nontrivial power law temporal correlations. The
properties of these correlations are studied and discussed in detail, and the behavior of the fithess distribution
is studied analytically{S1063-651X98)02009-1

PACS numbeps): 05.40:+j, 05.45+b

Self-organized criticalitfSOQ has been widely investi- are in local minima within the same ecological network. For
gated during the past few years, as one of the prominernthese species the separation of time scales can be relaxed to
candidates to explain the spontaneous critical behavior afllow more than one species to mutate, i.e., every species has
many natural phenomena,2]. Systems exhibiting SOC be- a chance to be the next one to evolve, but the least fit species
havior are characterized by the absence of any time or lengtié still the most likely to change at the next time step. In this
scale, resulting in @ower lawdistribution of many relevant Paper we relax the extremal dynamics of the BS model ac-
quantities[3—6]. From the theoretical point of view, SOC cording to this principle. Every species is assigned a prob-
behavior emerges in many models witkiremal dynamics ~ ability p(f ) to be selected that depends on its fitness. We
which the element that has extremal properties drives th8ave chosen the class p{f ) spanned by a parameter
evolution of the systerfi2]. Typical examples of such mod- according to
els are invasion percolation for fluid displacement in porous N 1
media[5], and the Sneppen model for the dynamics of sur- p.(f)= ( 2 f.a) foa 1)
faces pinned by quenched disorddi. The Bak-Sneppen “ = ’

(BS) model of biological evolution is the simplest extremal

model realizing SOG3]. whereN is the number of sitesspecies on the lattice. The
In its original version, the BS model describes a one-BS model corresponds to the limit— .
dimensional “food chain” ofN sites(“species”) in which A relaxation of the extremal rule has already been intro-

the fitnessf of each species is described by a random numduced in the BS model in the way of a temperaturelike pa-
ber between 0 and 1. At every time step the site with thgameter[10]. In that case, the probability of a site to be
smallest fitnesgin the following referred to as the active chosen as active was given by a Boltzmann weight factor
site) is found, and its fitnesgas well as the fitnesses of its Pr(f )~ "7, that upon normalization gives
two nearest neighborghanged at random. The critical state N _1
is a stable attractor of the dynamics, and is characterized by (f )= E e fiIT| ot )
a threshold in the population density, and by power law dis- P = ’
tributions of some characteristic quantities such as the ava-
lanche size distribution and the first- and all-return timesOn introducing probability(2), one sees that the model is
distributions of the activity3]. critical only in the limit T—0. Any value of temperature

A question that arises naturally is to what extent the apT>0 leads to a different behavipt0]. Our scheme is more
plication of extremal dynamics is justified in the biological in line with recent results in the context of polymers in a
context. Extremal dynamics emerges from the large separalisordered environment, where choices such as(Bgare
tion of time scales typical of evolution in fitness landscapesintroduced in order to move from the weak disorder limit to
Species that are in a local minimum of the fitness landscapthe strong disorder case. In that context it is observed that the
evolve toward a nearby peak much faster than highly fit spestrong disorder regime emerges only ter«©, « finite be-
cies drift away from their privileged conditiofy—9]. One ing always in the weak disorder universality cl$g]. Our
could, however, think of situations in which several speciegesults show a similar trend, but in addition some nontrivial
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80 This relation implies that forx>1, n(f )~f« for f—0,
‘ . with @’=a— 1. By inserting these relations into E@), we
/ el obtain
20 £=F - n(f t)
o . M n(f,t)= M(a)f dy +2 M(a )f dy —o—
< 10° 10° 107 10°
* - —2n(f,1)
10 + 1 n(f,t)
o—o =20 =3—M(a)—5——2n(f,t). 5)
A—A g=5
&— o=1 |
o= o0 In the stationary statey(f,t) does not depend on time, and
0.0,% i Yy 06 o8 10 therefore the solution of Eq5) reads
Fitness f
3f«
FIG. 1. Fitness distribution for different values of The verti- nf)=cr——. (6)
cal line represents the position of the threshold of the Bak-Sneppen 2%+ M(a)

model. In the insefwhere the units are the same as in the large , o . . . .
figure) we show a power law fitdashed ling of the fitness prob- Sinc@a’=a, the normalization condition is fulfilled. Using
ability distribution n(f ) for «=2 (solid line). The fit yields an  the normalization condition together with E@), it is pos-
exponente’ =1.85, that is indeed very close to the mean field Sible to show thaM (a)~2X37* for a—co. Substituting
predictiona’ = 2. The deviation from power law behavior for very this expression back into E¢6), we recover, in the limit
small f in n(f ) is due to finite size effects. —oo, the mean field fitness distribution of the Bak-Sneppen
model, namely,n(f )=36(f—3). Turning our attention
features appear. In particular, although the system is alwaysnce again to Fig. 1, in the inset one can see that,aofor
noncritical for anya<<c, some quantities exhibit a power =2, the exponent’ obtained numerically is very close to

law behavior at intermediate times far>1. At variance
with the approach of Ref10], defining the probabilities via

the mean field prediction.
We now come to the investigation of correlations within

Eq. (1) ensures that when the fitness of a site tends to zerdhe asymptotic state. For this purpose we performed numeri-

the probability of choosing it approaches ofiedependent
of the lattice sizg that isp,(f—0)— 1. In the case op-,

cal simulations for values oft ranging from 0 to 50, and
lattice sizes up to 2 (the limitations introduced by the nu-

on the other hand, the same limit yields a number that apmerical treatment precluded us from going beyand 50).
proaches zero ad—oo. In our simulations we collected statistics for avalanches and

Let us now proceed to discuss the results obtained for thell- and first-return time distributions. The dynamics of our
probability p,(f ) [for simplicity, we will refer to this as model not being extremal, the causal connection inside an
p(f ) in the futurd. The fitness probability distribution(f )  avalanche cannot be defined in terms of a critical threshold
at stationarity is plotted in Fig. 1, for different values @f  f for the fitness distributiofiin fact, as Fig. 1 indicates, this
For largea the distribution goes to the BS step function with threshold does not exjstOne needs another definition of
a threshold af =f.~0.667. However, for any finitee there  causal connection inside an avalanche. The one we adopt
remains a tail of nonzero occupation probability, even athere has been tested in both extremal and nonextremal dy-
small fitnesses. This is what we naively expect, since anyamics with quenched disordgt1].
fitness has a certain probability to survive. The first return time distributio®;(t) is characterized by

The qualitative behavior ofi(f ) can be derived from a two different power law regimes. For short times, a behavior
mean field master equatiofspatial correlations are ne- resembling that of the original BS model appears (
glected = 7{B). For longer times, the random choice of the active
site over the lattice plays an important role in changing the
value of the exponent to a new(«). The exponents corre-
sponding to this second regime are shown in Fig. 2, where
one can see that;(a)—1" as « increases. The all-return
time distribution exhibits the same kind of crossover: The
exponentst,(«) corresponding to the second regime are
also shown in Fig. 2. Our simulations indicate that the value
of t at which the crossover takes place increases &s-
creases. This reflects the fact that the system behaves more
and more like the BS model as— . We will come back to
this point in the case of the avalanches.

To understand better the behavior of the system away
from the BS regime, we proceed to analyze in detail the
first-return time distribution in the case=2. In this case,
the BS behavior is relegated to time scales comparable with
the microscopic times and, therefore, of no relevance. More-

. 1 1
n(f,t)= Jo P(y—f )n(y,t)dy+2JO n(y,t)dy

1 1
—f P(f—>y)n(f,t)dy—2n(f,t)J’ dy. (3
0 0

In this equationP(a—b) represents the probability that the
fitnessa, of the chosen species, is changedtoThe two
terms not containind®(a—Db) give the contribution of the
neighbors. In our model we haw®(y—f )=M(a)y™ ¢ and
P(f—y)=M(a)f™ ¢, with M(«a) given by the normaliza-
tion. From Eq.(1) we see that, in the limiN— o,

1 -1
f n(f )f—adf} .
0

M(a)= (4)
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FIG. 2. First-return time exponeittircles and all-return time
exponentgsquaresvs a. FIG. 4. This figure shows the unnormalized avalanche probabil-
ity distributions for different values of. The different lines repre-
over, the fact that the exponent is less than @ee Fig. 2, sent the best fit given by Eq9). The figure is plotted on a
implies the presence of a cutoff in the distribution which log,¢l0g;, scale, and is measured in time steps.
depends on the system sike As we show below, the de-

pendence of the cutoff oN can be used to understand the _ =11 _UN
gnderlying processes leading to a non-BS power law behav- P¢(t,N)= N 1- N - Ne , N>1. ®)
ior

In Fig. 3, the first-return distributioP¢(t,N) is plotted  This shows that the cutoff in thB(t,N) is not a finite size
for «=2 and different system size$=212 2! and 2%  effect but, rather, evidence of noncriticality. The presence of
One can clearly see a power law behavior with an exponerd damping factoN 2~ in Eq. (7) is necessary for the
71(a=2)=0.50(1), followed by an exponential cutoff re- normalization of the first-return probability in the thermody-
lated to the finite size of the system. In the inset in Fig. 3, wenamic limit.

plot the collapse of the same data according to the law The fact that the system is not critical can be better un-
derstood by looking at the avalanche distributions. As can be

P,(t N)=t‘TfN‘Z<1‘Tf)f(L) % seen in Fig. 4, a nonintegrable power law behavior is fol-
AN z) lowed by an exponential decay. The best fit for the avalanche

distributions is provided by the function
The data for different systems sizes lay one on each other

with the choices{(a=2)=0.50(1) andz=1. The exponent P(t,a,N)~t~"e MaNt 9
z=1 is the same as for a completely random choice of the 1 _ -
active site over the latticécorresponding taxr=0), where where A *(«,N) is the characteristic length scale for the

the first-return probability can be exactly computed as avalanches, and=0.60(2) for any v’alue ofe. We also
computed the values of for different o’s and different val-
107 ] ues ofN. The results are shown in Fig. 5, and lead\o
102 L > -06 l
s < -0.8 ]
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FIG. 3. First-return time probability distribution with an expo-
nenta=2 and different system size¥=2' 2' and 2° The 20 % 120 130 1.40
dashed line is a power law with exponent 0.50. The collapse plot of logy 0t
the three distributions according to E) is shown in the inset.
Both the main figure and the inset are plotted on a¢dgg;, scale. FIG. 5. Scaling of the characteristic timga) vs a (15<a

t is measured in time steps. < 30) (see text for details
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=A(N)a %, where A(N=2%%)=71(2), A(N=219=43(2) Further insights can be obtained by studying the distribu-
and §=2.2(2), ands independent of. tion of the avalanches. On the one hand, this allows us to

In this paper we have introduced a version of the Bak-compute the typical time length™* introduced into the sys-
Sneppen model in which a stochastic dynamics replaces tHgM With the parametes. On the other hand, it leaves us

. e with the unsolved problem of understanding the indepen-
or|g|naI. extremgl' one. The pr.esent mod|f|cat|on of the BSgence of the exponenton «, evidence that contradicts the
model is noncritical, just as in previous attempts to relaxpajve expectation and the behavior of the other distributions
extremal dynamic$10]. Nonetheless, at variance with Ref. studied here. It is worth pointing out that an analogous inter-
[10], we have shown that it is possible to recover a BS-likemediate time behavior was recently observed in the integra-
behavior for first- and all-return distributiorien small time ~ tion of population dynamics equationsuch as Lotka-
scales for large values ofx. The long-time scales also ex- Volterra equations[13]. This work can be considered as an

hibit nontrivial power law correlations, whose origin can be attempt to bujld a bridge b_etween ex”e'”f‘a' modstowing
b gin ca SOC behavior and continuous equationse.g., Lotka-

Molterra equations the most frequently used paradigms in

due to early end of the avalanches. biological contexts.
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